Communications to the Editor

CHITINOVORINS A, B AND C, NOVEL β-LACTAM ANTIBIOTICS OF BACTERIAL ORIGIN

Sir:

In recent several years, isolation of β -lactam antibiotics including monobactams, a carbapenem and a cephem compound from bacterial strains has been reported¹⁾. In this paper, we report the isolation of chitinovorins A, B and C from a bacterial strain identified as *Flavobacterium chitinovorum* sp. nov. which are characteristic in possessing a formylamino group at the C-7 position of the cephem nucleus.

The strain was cultivated in 30-liter jar fermentors each containing 20 liters of a medium consisting of glucose 1.0%, glycerol 0.25%, starch 0.25%, soybean meal 1.0%, corn steep liquor 0.5%, yeast extract 0.1%, NaCl 0.1%, CaCO₃ 0.1% (pH 7.0) for 2 days at 28°C under aeration of 20 liters per minute and agitation of 200 rpm. Antibiotic activity was assayed by the pulp disk agar diffusion method using *E. coli*. LS-1 (a supersensitive mutant to β -lactam antibiotics). The active compounds in the culture filtrate (150 liters) were adsorbed on an activated carbon (Wako Chemicals) at pH 7.0 and eluted with 60% acetone at pH 3.5. The eluate was concentrated and freeze-dried to give a crude

powder. It was dissolved in water and passed through a column of SP-Sephadex C-25 (Pharmacia Fine Chemicals) at pH 2.0. Chitinovorins A and B were adsorbed on the column and eluted with 0.2 M NaCl, whereas chitinovorin C appeared in the effluent and recovered with a column of Amberlite IRA-68 (Cl-) (Rohm and Haas Co., Ltd.). Chitinovorin A (a main product) was purified by column chromatography with MCI gel CHP-20P (Mitsubishi Kasei Kogyo) followed by Hitachi gel #3019 (Hitachi Seisakusho). Chitinovorin B was isolated from the enriched fraction obtained in the above chromatographic procedure by preparative HPLC on a Nucleosil 10C₁₈ column (Macherey-Nagel). Chitinovorin C was purified by column chromatography with QAE-Sephadex A-25 (Pharmacia Fine Chemicals) and preparative HPLC on a Nucleosil 10C18 column. Finally, chitinovorin A hydrochloride (85 mg), B hydrochloride (4 mg) and C sodium salt (3 mg) were obtained.

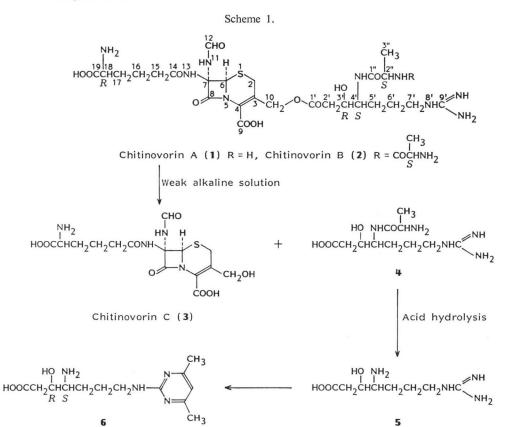
Chitinovorins A (1) and B (2) are basic substances and the hydrochloric acid salts are obtained as hygroscopic colorless powders. They are readily soluble in water and show positive reactions with ninhydrin and SAKAGUCHI's reagents. Chitinovorin C (3) is an acidic substance. The sodium salt is a colorless amorphous powder which is soluble in water and posi-

Table 1. Physico-chemical properties of chitinovorins A, B and C.

	A (1)	B (2)	C (3)		
Molecular formula	$C_{26}H_{41}N_9O_{11}S^{a)}$	$C_{29}H_{46}N_{10}O_{12}S^{b}$	$C_{15}H_{20}N_4O_8S^{c}$		
SIMS m/z	688 (M+1)	759 (M+1)	417 (M+1)		
UV $\lambda_{\max}^{H_2O}$ nm (ε)	261 (8,000)	261 (8,000)	260 (8,300)		
IR (KBr) cm^{-1}	3380, 3200, 1772, 1725,	3380, 3200, 1772, 1725,	3400~3200, 1764,		
	1665, 1510, 1400, 1165	1660, 1525, 1400, 1160	1670~1600, 1510,		
			1400, 1136, 1032, 990		
CD (H ₂ O, pH 7.0)	300, 0	305, 0	300, 0		
λ (nm), [θ]	258, +45,100	259, +47,300	257, +50,400		
	243, 0	243, 0	242, 0		
	231, -53,100	230, -54,900	228, -55,800		
	210, -23,800	211, -22,500	210, -20,100		
	202, -29,300	201, -37,700	200, -30,700		
	195, -22,000	195, -33,900	195, -16,500		

^{a)} From elemental analysis of the diacetyl derivative.

b) From the results of SIMS.


c) From elemental analysis of the sodium salt.

Position ^{b)}		δ (multiplicity, J)	
Position	Hydrochloride of A (1)	Sodium salt of C (3)	Hydrochloride of 4
2-CH ₂	2.67 (d, 17.8)	2.69 (d, 17.6)	
	2.99 (d, 17.8)	2.96 (d, 17.6)	
6-CH	4.67 (s)	4.65 (s)	
$10-CH_2$	4.03 (d, 12.4)	3.53 (d, 12.5)	
	4.21 (d, 12.4)	3.55 (d, 12.5)	
12-CH	7.48 (s)	7.47 (s)	
15-CH ₂	1.77 (t-like)	1.76 (t-like)	
$16-CH_2$	~1.0 (m)	1.06 (m)	
$17-CH_2$	~1.25 (m)	1.23 (m)	
18-CH	3.07 (t-like)	3.05 (t-like)	
$2'$ -CH $_2$	1.84 (dd-like)		1.79 (dd-like)
	2.00 (dd-like)		1.96 (dd-like)
3'-CH	~3.37 (m)		3.37 (m)
4'-CH	3.21 (m)		3.21 (m)
5'-CH ₂	$0.7 \sim 1.2$ (m)		$0.7 \sim 1.2$ (m)
$6'$ -CH $_2$	J 0.7.01.2 (III)		0.7/01.2 (iii)
$7'$ -CH $_2$	2.53 (t-like)		2.53 (t-like)
2''-CH	~3.39 (m)		3.42 (q, 7.6)
3''-CH ₃	0.83 (d, 6.6)		0.87 (d, 7.6)

Table 2. ¹H NMR data of chitinovorins A and C and 4^a) (D₂O, ref: external TMS).

^{a)} See text and Scheme 1.

^{b)} Numbering is illustrated in Scheme 1.

tive to ninhydrin but negative to SAKAGUCHI's reaction. Some other physico-chemical properties are shown in Table 1.

By acid hydrolysis, 1 produced one mole each of α -aminoadipic acid (Aad) and Ala, *ca*. 0.5 mol of Gly and a basic compound (5) positive to ninhydrin and SAKAGUCHI's reactions. 2 produced Aad (1 mol), Ala (2 mol), Gly (ca. 0.5 mol) and 5. 3 produced only Aad (1 mol) and Gly (ca. 0.5 mol). The chiralities of Aad and Ala were determined to be D and L forms, respectively, by their CD spectra. By acid hydrolysis after dinitrophenylation, 1 produced DNP-Aad and DNP-Ala. EDMAN degradation reaction on 2 indicated the presence of Ala \rightarrow Ala sequence. When 1 was treated with carbonate buffer solution, pH 9.0 at 27°C for 20 hours, most of 1 disappeared and the appearance of 3 and a basic compound (4) was observed in appreciable yield. They were separated by chromatography on a MCI gel CHP-20P column, and the sodium salt of 3 and the hydrochloric acid salt of 4 were prepared.

The characteristic UV absorptions (261, 260 nm) and the IR absorptions (1772, 1764 cm^{-1}) of these antibiotics (Table 1) and the production of some one half mol of Gly by acid hydrolysis²⁾ indicated these antibiotics (1, 2 and 3) have a 7-substituted cephem nucleus. Furthermore, the above degradative studies suggested

that 1 is composed of two moieties, 3 and 4, and 2 is composed of 1 and one additional Ala residue.

The ¹H NMR and ¹³C NMR data of 1, 3 and 4 recorded with a Varian XL-200 spectrometer are listed in Tables 2 and 3. The signals in the ¹H NMR of 3 were easily assigned by comparison with those of cephamycin C and deacetylcephalosporin C except for a singlet at 7.47. From singlefrequency selective decoupling (SFSD) experiments and the 1H-undecoupled spectrum in the ¹³C NMR study of 3, a ¹³C signal at 164.3 (d, ${}^{1}J_{C-H} = 200 \text{ Hz}$) was observed to be coupled with the ¹H signal at 7.47. The chemical shifts and large ${}^{1}J_{C-H}$ value suggested a formylamino structure. It was also noticed that a ¹³C signal at 77.5 (s) which should be assigned to C-7 is located at significantly higher field than the corresponding signal (95.7) observed with cephamycin C. Thus, the presence of a formylamino group at C-7 position was deduced, and all the signals in the ¹H NMR and ¹³C NMR of 3 were assigned exactly as shown in Tables 2 and 3 based on the postulated structure in Scheme 1. The molecular formula (Table 1) agreed with the assigned structure.

The configuration at C-6 was deduced to be R from the CD spectrum (Table 1) which showed similar Cotton effects to that observed with cephamycin C. In order to determine the configuration at C-7, a model compound, 7β -(R-5-amino-5-

	δ (multiplicity)				δ (multiplicity)		
Position ^{b)}	Hydro- chloride of A (1)	Sodium salt of C (3)	Hydro- chloride of 4	Position ^{b})	Hydro- chloride of A (1)	Sodium salt of C (3)	Hydro- chloride of 4
2	26.5 (t)	26.2 (t)		18	55.3 (d)	55.3 (d)	
3	115.3 (s)	120.4 (s)		19	175.2 (s)	175.4 (s)	
4	132.9 (s)	130.7 (s)		1'	173.9 (s)		176.4 (s)
6	63.9 (d)	64.0 (d)		2′	39.2 (t)		39.1 (t)
7	77.6 (s)	77.5 (s)		3′	70.5 (d)		70.6 (d)
8	160.0 (s)	160.0 (s)		4′	54.3 (d)		54.3 (d)
9	168.9 (s)	169.4 (s)		5'	26.9 (t) ^{c)}		26.9 (t)°
10	65.1 (t)	61.7 (t)		6'	25.4 (t) ^{c)}		25.4 (t) ^{e)}
12	164.3 (d)	164.3 (d)		7′	41.5 (t)		41.5 (t)
14	177.6 (s)	177.7 (s)		9′	157.5 (s)		157.5 (s)
15	35.3 (t)	35.3 (t)		1''	171.6 (s)		171.6 (s)
16	21.4 (t)	21.4 (t)		2''	50.0 (d)		49.9 (d)
17	30.7 (t)	30.8 (t)		3''	17.6 (q)		17.5 (q)

Table 3. ¹³C NMR data of chitinovorins A and C and 4^{a} (D₂O, ref: internal dioxane $\delta = 67.4$).

^{a)} See text and Scheme 1.

b) Numbering is illustrated in Scheme 1.

^{c)} May be interchanged.

carboxyvarelylamino)-7 α -formylamino-3-methyl-3-cephem-4-carboxylic acid, was stereospecifically synthesized from 7 β -amino-3-methyl-3-cephem-4carboxylic acid (data will be published elsewhere). The ¹H NMR and ¹³C NMR of the model compound including a ¹H signal at 7.43 and a ¹⁸C signal at 164.2 which arise from the 7 α -formylamino group were quite similar to those of **3** except for signals due to the 3-methyl group and 2-CH₂. Thus, the stereochemistry of **3** was confirmed.

The basic compound (4), already shown to be derived from 1 by treatment with weak alkaline solution, was also obtained by partial acid hydrolysis of 1. The hydrochloric acid salt was obtained as a hygroscopic colorless powder, positive to ninhydrin and SAKAGUCHI's reactions. 4 was cleaved to 5 and Ala by complete acid hydrolysis. 4 produced 5 and DNP-Ala by acid hydrolysis after 2,4-dinitrophenylation, indicating that 4 is composed of 5 and an Ala residue which linked to an amino group of 5. 5 was considered to have an amino group and a guanidino group from its color reactions. Further, the presence of a carboxyl group was suggested by paper electrophoresis using carbonate buffer, pH 10.0, where 5 migrated to the anode. In the ¹H NMR study of 4, the presence of a proton-proton coupling system (C-2' to C-7' in Scheme 1) was determined by detailed decoupling experiments in addition to an Ala unit. Analysis of the ¹³C NMR of 4 and taking into account the above results lead to the postulated structure shown in Scheme 1. In the ¹H NMR of 5, signals due to the methyne protons of C-3' and C-4' shifted to 3.70 and 2.76, but other signals did not shift appreciably, confirming that the alanylamino group is attached to C-4' and the guanidino group to C-7'.

5 was converted to 6 by reacting with acetylacetone. 6 was obtained as a colorless crystal whose elemental analysis and mass spectral data, m/z 283 (M+1), agreed with the structure. Furthermore, X-ray diffraction analysis of 6 revealed that the relative configurations at C-3' and C-4' are (R^*) and (S^*). In order to determine the absolute configuration, the (C-3' R, C-4' S) compound was derived from L-ornithine (data will be published elsewhere). When the CD spectra of N-p-bromobenzoyl derivatives of the both compounds (natural and synthetic) were compared, identical Cotton effects, negative at

Table 4. Antimicrobial spectra of chitinovorins A, B and C.

Organism	MIC $(\mu g/ml)^{a}$			
Organishi	А	В	С	
Staphylococcus aureus 209P JC-1	>200	>100	>200	
S. pyogenes C-203	100	100	>200	
S. pneumoniae I	50	100	>200	
Escherichia coli NIHJ JC-2	25	50	100	
<i>E. coli</i> 377 (R) ^{b)}	50	50	100	
<i>E. coli</i> 73 (R) ^{c)}	50	50	100	
Klebsiella pneumoniae SRL-1	50	50	200	
Proteus mirabilis PR-4	50	50	100	
P. vulgaris CN-329	100	100	100	
Enterobacter cloacae A13047	50	50	100	
Serratia marcescens A13880	200	100	200	
Pseudomonas aeruginosa 25619	>200	>100	>200	

 Agar dilution method: inoculum= one loopful of 10⁶ cells/ml.

^{b)} Cephalosporinase producing strain.

^{c)} Penicillinase producing strain.

246 nm and positive at 228 nm, were observed.

For the structure elucidation of 1, only the problem of the linkage of 3 and 4 was left. From the difference of the chemical shifts of the ¹H signals attributed to the C-10 methylene between 1 and 3, an ester linkage between the hydroxymethyl of 3 and the carboxyl of 4 was postulated (Scheme 1). An absorption at 1725 cm⁻¹ shown in the IR of 1 and 2 but not in 3 (Table 1) was attributed to the ester carbonyl hydrogen-bonded to the hydroxyl group at C-3'. The molecular formula (Table 1) agreed with the postulated structure. In the ¹H NMR study of 1, the proton-proton coupling systems due to Aad, Ala and 5 units were confirmed by decoupling technique (Table 2). All the ¹³C signals of 1 were exactly assigned by SFSD experiments (Table 3), supporting the structure.

As has already been mentioned, 2 has the structure in which one additional L-Ala residue links to the L-Ala residue of 1.

Chitinovorins A, B and C show weak inhibitory activities against Gram-negative bacteria as shown in Table 4.

Although the synthesis of a variety of β -lactam compounds possessing a formylamino group in their β -lactam rings has been reported^{3,4)}, the occurrence of such compounds in nature has not

been reported yet.

Addendum in Proof

After submission of this paper, the isolation of two 7-formylaminocephem compounds, SQ 28,516 and SQ 28,517, from *Flavobacterium* sp. SC 12,154 has been reported⁵⁵.

Addendum from The Editorial Office

Cephabacins F_1 and F_2 (will appear in HARADA, S., *et al.*, J, Antibiotics 38(12), 1984) are identical with chitinobolins A and B.

> JUN'ICHI SHOJI TOSHIYUKI KATO Ryuzi Sakazaki WATARU NAGATA YOSHIHIRO TERUI YUZO NAKAGAWA MOTOO SHIRO KOICHI MATSUMOTO TERUO HATTORI TADASHI YOSHIDA EIJI KONDO Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan (Received June 27, 1984)

References

- SYKES, R. B.; W. L. PARKER & J. S. WELLS: β-Lactam antibiotics produced by bacteria. In Trends in Antibiotic Research. Genetics, Biosyntheses, Actions & New Substances. Ed., H. UMEZAWA et al., pp. 115~124, Japan Antibiotics Res. Assoc., Tokyo, 1982
- BRANNON, D. R.; J. A. MABE, R. ELLIS, J. G. WHITNEY & R. NAGARAJAN: Origin of glycine from acid hydrolysis of the β-lactam antibiotic A16886B. Antimicrob. Agents Chemother. 1: 242~246, 1972
- MILNER, P. H. (Beecham): α-Formamido-substituted β-lactam compounds — Useful as broad spectrum antibacterials and intermediate. Japan Kokai 58-38,288, Mar. 5, 1983
- PONSFORD, R. J. (Beecham): 1-Acyl-2-azetidinones. Japan Kokai 58-134,074, Aug. 10, 1983
- SINGH, P. D.; M. G. YOUNG, J. H. JOHNSON, C. M. CIMARUSTI & R. B. SYKES: Bacterial production of 7-formamidocephalosporins. Isolation and structure determination. J. Antibiotics 37: 773~780, 1984